分享好友 行业资讯首页 频道列表

碳纤维复合材料与传统金属的性能对比

2019-12-21 14:358920
   随着新能源汽车行业的不断发展,对于汽车轻量化要求日益增高。在众多材料中,碳纤维复合材料以其优异的比强度、比刚度、耐腐蚀及抗疲劳性能日益为人们所重视。而碳纤维材料与金属材料之间的不同特点,也为工程设计人员提供了不同的设计思路,以下将简单对比碳纤维复合材料与传统金属的特点与差异性。
 
  01比刚度和比强度
 
  对比金属材料,碳纤维材料重量轻,比强度及比刚度高。下表给出正交铺层(Cross-Ply)纤维复合材料跟常规材料力学性能的比较。可以看出在模量和强度方面传统碳钢表现都非常好,但密度大严重影响轻量化应用。6系铝的模量和强度小于碳钢,但其密度较小。而树脂基碳纤维模量高于铝合金,强度通过设计可达到高强钢水平,远远高于铝合金,在性能和轻量化两方面优势都非常明显。
 

 
  02可设计性
 
  金属材料通常呈各项同性,有屈服或条件屈服现象。而单层碳纤维具有明显的方向性。单层板沿纤维方向力学性能高于垂直纤维方向性能和纵横剪切性能1~2个量级,并且应力应变曲线在断裂前呈线弹性关系。
 
  因此,碳纤维材料可以通过层合板理论,选择单层的铺设角、铺层比、铺层顺序。可根据载荷分布特点,针对性设计来获得需要刚度和强度性能,而传统金属材料只能通过加厚来实现。同时,层合板性能裁剪设计不仅可以获得所需的面内刚度和强度性能,还可以获得独特的面内与面外之间的耦合刚度。
 

 
  03耐腐蚀性
 
  相比较于金属材料,碳纤维材料具有很强的耐酸碱腐蚀的能力。碳纤维是经过2000—3000℃高温石墨化处理形成的类似石墨晶体的微晶结构,这种结构本身就具有很高的耐介质腐蚀性,在高达50%的盐酸、硫酸或者磷酸中亦能在弹性模量、强度和直径等方面基本保持无变化。因此,作为增强材料来说,碳纤维在耐腐蚀性能方面有足够的保证,不同基体树脂在耐腐蚀性上有所区别。如常见的碳纤维增强环氧树脂基,环氧树脂的耐候性较好,仍能较好地保持强度。
 
  04抗疲劳性
 
  碳纤维复合材料的疲劳特性主要影响因素是压缩应变和高应变水平。疲劳性能通常进行压—压(R=10)和拉—压(R=-1)的疲劳试验,而金属材料一般进行R=0.1的拉—拉疲劳试验。相比于金属零件,尤其是铝合金,碳纤维零件具有优异的疲劳性能。在汽车底盘等抗疲劳性要求较高的领域,碳纤维复合材料具有更好的应用优势。同时碳纤维材料几乎不存在切口效应。大多数碳纤维层合板在整个寿命期内,有切口试验的S-N曲线与无切口试验的S-N曲线相同。
 
  05可回收性
 
  目前成熟的碳纤维基体使用热固性树脂,当固化交联后很难再次提取利用,对环境造成较大影响。因此碳纤维回收难是产业发展的瓶颈之一,也是大规模应用亟需解决的技术难题。目前国内外大部分回收方法普遍成本较高,难以产业化。华特碳纤正积极探索可回收料解决方案,已完成多个样品的试制,回收效果良好,具备量产条件。
  结论:
 
  相比传统金属材料,碳纤维材料在力学性能、轻量化、可设计性、抗疲劳性上具有得天独厚的优势,但是,其生产效率、回收难仍然是制约其进一步应用的瓶颈所在。相信随着技术、工艺方面突破创新,碳纤维能够在汽车上将取得越来越多的应用。
反对 0
举报 0
收藏 0
打赏 0
评论 0
传感器-用于下一代复材制造
在追求可持续性的过程中,传感器正在减少周期时间、能源使用和浪费,实现闭环过程控制的自动化,并增加知识,为智能制造和结构开辟新的可能性。

0评论2025-07-19128

减重30%!碳纤维电池上盖如何破解新能源汽车“续航焦虑”?
随着新能源汽车的飞速发展,电池系统的安全性和耐久性成为了行业发展的关键。电池上盖作为电池系统的重要组成部分,不仅需要具备

0评论2025-07-19161

考特斯大容量储氢内衬挤吹成型技术,推动复合材料压力容器发展
特斯吹塑成型专家团队采用挤吹成型技术,成功生产出用于氢压力容器的大容量聚酰胺内衬。该内衬长2m多,直径约500mm,容量320L。这标志着采用吹塑成型技术生产如此大尺寸储氢容器内衬的首次成功实现,展现了该技术在制造大型、高性能储氢部件方面的潜力,为开发更具成本效益的大容量储氢解决方案提供了新的技术路径,对推动氢能应用发展具有积极意义。

0评论2025-07-16152

新型纤维增强陶瓷基复合材料问世:旨在填补CFRP与CMC之间的性能空白
Pyromeral公司最新推出PyroKarb、PyroSic和PyroXide系列材料,并提供PyroXide丝束预浸带形态,适用于热防护罩、排气管道、雷达罩及其他高温环境下的复合材料部件。

0评论2025-07-09148

电动汽车轻量化复合材料动力电池壳体:关键技术开发与性能验证研究
随着新能源汽车产业的快速发展,动力电池壳体的轻量化设计已成为提升车辆续航能力、降低能耗的核心技术之一。传统金属材料因密度高、成型工艺复杂等局限性,逐渐被复合材料替代。本文从材料选型、结构设计、成型工艺及性能验证四个维度,系统探讨轻量化复合材料动力电池壳体的关键技术突破。

0评论2025-07-03133

新一代飞机的关键材料——碳纤维高模量生产技术研发已全面启动
2025年6月11日,日本新能源及产业技术综合开发机构(NEDO)宣布,在“飞机用创新复合材料通用平台技术开发项目”中,选定了碳纤维增强塑料(CFRP)高速量产技术的新研发项目。

0评论2025-07-01199

MFFD 左侧筒体焊接
CO2激光焊接。为了实现左机身连接的激光焊接工艺,沿两个壳体的纵向边缘分层放置了长达4.5米的薄CFRTP对接带。上下壳体蒙皮连接处,采用阶梯式外形,以容纳对接带。Fraunhofer在LPA项目“对接带集成技术开发与模具设计、验证、主要部件装配和操作实施”(BUSTI)中开发了所有皮带进料、定位和封边的解决方案。

0评论2025-06-12174

吊舱设计、制造
总部位于密歇根州的地面测试解决方案公司(GTS)分享了用于测试喷气式和直升机发动机的复合材料吊舱组件的设计和制造过程。总部

0评论2025-05-13162